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Abstract
The authors introduce 2-variable forms of Laguerre and modified Laguerre
matrix polynomials and derive their special properties. Further, the
representations of the special linear Lie algebra sl(2) and the harmonic
oscillator Lie algebra G(0, 1) are used to derive certain results involving these
polynomials. Furthermore, the generating relations for the ordinary as well
as matrix polynomials related to these matrix polynomials are derived as
applications.
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1. Introduction

Special matrix functions appear in the literature related to statistics [7] and recently in
connection with matrix analogues of Laguerre, Hermite and Legendre differential equations
and the corresponding polynomial families [8–10].

Jódar et al [9] considered systems of second-order differential equations of the form

xX′′(x) + (A + I − λxI)X′(x) + CX(x) = 0, (1.1)

where λ is a complex number, x is a real number and A,C and X(x) ∈ C
m×m.

Equation (1.1) is important from the viewpoint of applications, since the systems of
second-order differential equations of the type

A(x)X′′(x) + B(x)X′(x) + C(x)X(x) = 0, (1.2)

where A(x), B(x) and C(x) are matrix-valued functions, occur frequently in physics,
chemistry and mechanics [12, 19, 20]. Such systems also appear when one applies semi
discretization techniques to solve partial differential equations [21].

* This work has been done under a Major Research Project no F.33-110/2007 (SR) sanctioned to the first author by
the University Grants Commission, Government of India, New Delhi.
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Orthogonal matrix polynomials have become more and more relevant in the last two
decades. Laguerre matrix polynomials (LMaP) L(A,λ)

n (x) have been introduced and studied by
Jódar et al [9].

If A is a matrix in C
m×m such that the following spectral condition is satisfied:

−k �∈ σ(A)for every integer k > 0 (1.3)

and λ is a complex number with Re(λ) > 0, then the nth Laguerre matrix polynomial are
defined by [9; p 58(3.7)]

L(A,λ)
n (x) =

n∑
k=0

(−1)kλk

k!(n − k)!
(A + I )n[(A + I )k]−1xk, n � 0, (1.4)

where (A)n is the matrix Pochhammer symbol defined by

(A)n = A(A + I ) · · · (A + (n − 1)I ), n � 1; (A)0 = I.

The LMaP L(A,λ)
n (x) is a solution of the differential equation

xX′′(x) + (A + I − λxI)X′(x) + λnX(x) = 0, (1.5)

and the generating function of LMaP is given by [9; p 57]

(1 − t)−(A+I ) exp

( −λxt

(1 − t)

)
=

∞∑
n=0

L(A,λ)
n (x)tn, x, t ∈ C; |t | < 1. (1.6)

Many special functions and also some elementary functions are special cases of the
hypergeometric functions. Jódar and Cortés [11] introduced the Gauss hypergeometric matrix
function 2F1[A,B;C; z] as a matrix power series in the form

2F1[A,B;C; z] =
∞∑

n=0

(A)n(B)n(C)−1
n

n!
zn, (1.7)

where A,B,C are matrices in C
m×m such that

C + nI is invertible for all integers n � 0. (1.8)

The hypergeometric matrix function 2F1[A,B;C; z] converges when |z| < 1. Also, if
A,B,C are positive stable matrices in C

m×m such that

β(C) > α(A) + α(B), (1.9)

then the series (1.7) is absolutely convergent for |z| = 1.
Further, if C is a matrix in C

m×m satisfying (1.8) and CB = BC, then 2F1[A,B;C; z] is
the solution of the matrix differential equation [11; p 211(25)]

z(1 − z)W ′′(z) − zAW ′(z) + W ′(z)(C − z(B + I )) − AW(z)B = 0, 0 � z � 1

(1.10)

satisfying 2F1[A,B;C; 0] = I .
The 2-variable Laguerre polynomials have been introduced and studied in [3–5]. These

polynomials are shown to be the natural solutions of a particular set of partial differential
equations, which often appears in the treatment of radiation physics problems such as the
electromagnetic wave propagation and quantum beam life-time in storage rings [24].

The 2-variable associated Laguerre polynomials (2VALP) are specified by the series
[3; p 113(14)]

L(a)
n (x, y) =

n∑
k=0

(a + 1)n(−1)kxkyn−k

(a + 1)k(n − k)!k!
, (1.11)
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and the generating function for L(a)
n (x, y) is given as [3; p 113(15)]

(1 − yt)−a−1 exp

( −xt

(1 − yt)

)
=

∞∑
n=0

L(a)
n (x, y)tn. (1.12)

Furthermore, even though there exists the following close relationship:

L(a)
n (x, y) = ynL(a)

n

(x

y

)
, (1.13)

with the associated Laguerre polynomials L(a)
n (x) [1], yet the usage of a second variable in

the 2VALP L(a)
n (x, y) is found to be convenient from the viewpoint of their applications.

Motivated by the work of Jódar and his co-authors on Laguerre matrix polynomials [9]
and due to the importance of 2-variable forms of Laguerre polynomials [3–5], in this paper,
we introduce 2-variable Laguerre and modified Laguerre matrix polynomials. Further, the
contributions of Khan and her co-workers, see [13–15], related to Lie-theoretic generating
relations of Hermite and Laguerre polynomials motivated us to derive generating relations
involving these matrix polynomials by using Lie-algebraic techniques.

In section 2, we give the definition and properties of 2-variable Laguerre and modified
Laguerre matrix polynomials. In section 3, we derive the generating relations involving
2-variable Laguerre matrix polynomials (2VLMaP) L(A,λ)

n (x, y) by constructing a three-
dimensional Lie algebra isomorphic to special linear algebra sl(2), by using Weisner’s
[23] group-theoretic approach. In section 4, we use the representation theory of the Lie
algebra G(0, 1), to derive generating relations involving 2-variable modified Laguerre matrix
polynomials (2VMLMaP)f (A,λ)

n (x, y). In section 5, we discuss certain special cases which
would yield inevitably many new and known generating relations for the polynomials related to
2VLMaP L(A,λ)

n (x, y) and 2VMLMaP f (A,λ)
n (x, y). Finally, we give some concluding remarks

in section 6.

2. 2-variable Laguerre and modified Laguerre matrix polynomials

In view of the equations (1.6), (1.12) and (1.13), the generating function for 2-variable Laguerre
matrix polynomials 2VLMaP L(A,λ)

n (x, y) can be cast in the form

(1 − yt)−(A+I ) exp

( −λxt

(1 − yt)

)
=

∞∑
n=0

L(A,λ)
n (x, y)tn, (2.1)

where A is a matrix in C
m×m and λ is a complex number with Re(λ) > 0. The generating

function (2.1) is defined for complex values of x, y and t with |yt | < 1.
In order to obtain the series definition for 2VLMaP, we consider the matrix valued function

GA(x, y; t) = (1 − yt)−(A+I ) exp

( −λxt

(1 − yt)

)
. (2.2)

Further, in view of equation (2.1) and due to the fact that GA(x, y; t) is a function of
the complex variable t, which is holomorphic in |yt | < 1, we can represent GA(x, y; t) by a
power series at t = 0 of the form

GA(x, y; t) =
∞∑

n=0

L(A,λ)
n (x, y)tn, (2.3)

which on using equation (2.2) becomes

3
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GA(x, y; t) = (1 − yt)−(A+I )

∞∑
k=0

(−1)kλkxktk

k!(1 − yt)k

=
∞∑

k=0

(−1)kλkxktk

k!
(1 − yt)−(A+(k+1)I ). (2.4)

If we consider the Taylor expansion of the function (1 − yt)−(A+(k+1)I ) at t = 0, we can
write

(1 − yt)−(A+(k+1)I ) =
∞∑

n=0

(A + I )n+k((A + I )k)
−1 yntn

n!
, (2.5)

such that

A + nI is an invertible for every integer n � 0. (2.6)

From equations (2.4) and (2.5), it follows that

GA(x, y; t) =
∞∑

n=0

n∑
k=0

(−1)kλkxkyn−ktn

k!(n − k)!
(A + I )n((A + I )k)

−1. (2.7)

Thus, from equations (2.3) and (2.7) and by identification of the coefficient of tn, we
obtain the following series definition for the 2VLMaP L(A,λ)

n (x, y):

L(A,λ)
n (x, y) =

n∑
k=0

(−1)kλkxkyn−k

k!(n − k)!
(A + I )n((A + I )k)

−1, (2.8)

which can also be expressed in terms of the confluent hypergeometric function 1F1 [1] as

L(A,λ)
n (x, y) = �(A + (n + 1)I )(�(A + I ))−1yn

�(n + 1)
1F1

[
− n;A + I ; λx

y

]
. (2.9)

Now, by differentiating the generating function (2.1) with respect to t, x and y, we
obtain the following pure and differential matrix recurrence relations satisfied by 2VLMaP
L(A,λ)

n (x, y):

(n + 1)L
(A,λ)
n+1 (x, y) − (yA − (λx − y(2n + 1))I )L(A,λ)

n (x, y)

+ y2(A + nI)L
(A,λ)
n−1 (x, y) = 0, n � 1 (2.10)

and
∂

∂x
L(A,λ)

n (x, y) = 1

x

{
nL(A,λ)

n (x, y) − y(A + nI)L
(A,λ)
n−1 (x, y)

}
,

∂

∂x
L(A,λ)

n (x, y) = 1

xy

{
(n + 1)L

(A,λ)
n+1 (x, y) − (yA − (λx − y(n + 1))I )L(A,λ)

n (x, y)
}
, (2.11)

∂

∂y
L(A,λ)

n (x, y) = (A + nI)L
(A,λ)
n−1 (x, y).

From these recurrence relations, we conclude that the 2VLMaP L(A,λ)
n (x, y) are the

solutions of the following matrix differential equation:(
x

d2

dx2
+

(
A +

(
1 − λx

y

)
I

)
d

dx
+

λn

y

)
L(A,λ)

n (x, y) = 0. (2.12)

Further, we introduce the 2VMLMaP f (A,λ)
n (x, y) = (−1)nL(−A−nI,λ)

n (x, y). First
we derive the generating function of 2-variable modified Laguerre polynomials (2VMLP)

4
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f
β
n (x, y) = (−1)nL

(−β−n)
n (x, y) with the help of Brown’s method [2; pp. 32–40] of finding

pairs of generating functions by using an auxiliary parameter, see also [17; p 80].
We choose two sets

{
L(a)

n (x, y)
}

and
{
(−1)nL(−a−n)

n (x, y)
}
, which have a common

parameter a. Suppose that by introducing a second parameter m, we are able to construct a set{
P (a)

n (m; x, y)
}

such that the choice given sets are special cases of the constructed set.
If we are able to find a generating function for the constructed set

{
P (a)

n (m; x, y)
}
, then it

is possible to find a pair of generating functions for the two given sets. We recall that 2VALP
L(a)

n (x, y) are defined by the series (1.11) and the 2-variable modified Laguerre polynomials
(2VMLP) are defined by the series

(−1)nL(−a−n)
n (x, y) =

n∑
k=0

(a)n−kx
kyn−k

k!(n − k)!
. (2.13)

By examining the expansions (1.11) and (2.13), we are able to construct a generalization
P a

n (m; x, y) in the following form:

P a
n (m; x, y) =

n∑
k=0

(a + 1 + mk)n−k(−1)mkxkyn−k

k!(n − k)!
, (2.14)

where m is a nonnegative integer. Then

P a
n (1; x, y) = L(a)

n (x, y) (2.15)

and

P a
n (0; x, y) = (−1)nL(−a−n)

n (x, y). (2.16)

We use direct summation techniques to obtain a generating function for the set{
P a

n (m; x, y)
}
. Using result [22; p 100(2)] in equation (2.14), we have

∞∑
n=0

P a
n (m; x, y)tn =

∞∑
n=0

∞∑
k=0

(a + 1 + mk)n(−1)mkxkyntn+k

k!n!
.

Thus, finally we obtain
∞∑

n=0

P a
n (m; x, y)tn = (1 − yt)−a−1 exp

(
xt

(yt − 1)m

)
. (2.17)

Further, using equations (2.15) and (2.16) in equation (2.17) we obtain the pair of
generating functions as (1.12) and

(1 − yt)−a exp(xt) =
∞∑

n=0

(−1)nL(−a−n)
n (x, y)tn.

Thus, we conclude that the 2VMLP f
β
n (x, y) = (−1)nL

(−β−n)
n (x, y) are defined by the

generating function

(1 − yt)−β exp(xt) =
∞∑

n=0

f β
n (x, y)tn, (2.18)

with the series definition

f β
n (x, y) =

n∑
k=0

(β)n−kx
kyn−k

k!(n − k)!
, n = 0, 1, 2, . . . . (2.19)

Now, we are able to introduce 2VMLMaP f (A,λ)
n (x, y), where A is a complex matrix

satisfying condition (1.3) and λ is a complex number such that Re(λ) > 0. These polynomials

5
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have 2VMLP as a scalar case. By recalling the generating function (2.18) of 2VMLP f
β
n (x, y)

and from the properties of the matrix functional calculus [6] we establish the generating
function of 2VMLMaP f (A,λ)

n (x, y) as

(1 − yt)−A exp(λxt) =
∞∑

n=0

f (A,λ)
n (x, y)tn. (2.20)

We note for A = β ∈ C
1×1 and λ = 1 the generating function (2.20) reduces to the

scalar case (2.18). Now, we will use the matrix-valued functions (2.20) to show that the series
expansion of the 2VMLMaP f (A,λ)

n (x, y) is given by

f (A,λ)
n (x, y) =

n∑
k=0

(A)n−k(λx)kyn−k

k!(n − k)!
, n = 0, 1, 2, . . . . (2.21)

We assume that A is a matrix in C
m×m satisfying condition (1.3). Let λ be a complex

number whose real part is positive and consider the matrix-valued function

FA(x, y; t) = (1 − yt)−A exp(λxt), (2.22)

defined for complex values of x, y and t with |yt | < 1.
Note that FA(x, y; t), regarded as a function of the complex variable t is holomorphic in

|yt | < 1 and therefore FA is representable by a power series at t = 0 of the form

FA(x, y; t) =
∞∑

n=0

f (A,λ)
n (x, y)tn. (2.23)

From equation (2.22), we have

FA(x, y; t) =
∞∑

n=0

n∑
k=0

(A)n−k(λx)kyn−ktn

k!(n − k)!
. (2.24)

Finally, by using equations (2.23) and (2.24), we obtain the series definition (2.21). Also,
making use of the generating function (2.20), we derive the following pure and differential
recurrence relations satisfied by 2VMLMaP f (A,λ)

n (x, y):

(n + 1)f
(A,λ)
n+1 (x, y) − (yA + (λx + ny)I)f (A,λ)

n (x, y) + λxyf
(A,λ)
n−1 (x, y) = 0 (2.25)

and

∂

∂x
f (A,λ)

n (x, y) = λf
(A,λ)
n−1 (x, y),

∂

∂x
f (A,λ)

n (x, y) = 1

xy

(
(yA + (λx + ny)I)f (A,λ)

n (x, y) − (n + 1)f
(A,λ)
n+1 (x, y)

)
, (2.26)

∂

∂y
f (A,λ)

n (x, y) = 1

y

(
nf (A,λ)

n (x, y) − λxf
(A,λ)
n−1 (x, y)

)
,

respectively.
From these recurrence relations, we conclude that the 2VMLMaP f (A,λ)

n (x, y) are the
solutions of the following differential equation:

xy
∂2

∂x2
f (A,λ)

n (x, y) − (yA + (λx − y(1 − n))I )
∂

∂x
f (A,λ)

n (x, y) + λnf (A,λ)
n (x, y) = 0. (2.27)

6
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3. Group-theoretic method and Laguerre matrix polynomials

In order to make use of the Lie group-theoretic method, first we construct a matrix partial
differential equation corresponding to the matrix differential equation (2.12) of 2VLMaP
L(A,λ)

n (x, y). Further, using the recurrence relations (2.10) and (2.11), we determine the first-
order linear differential operators which form the base to compute the multiplier representation
[18; p 17] of the complex special linear Lie group SL(2).

We replace d
dx

by ∂
∂x

, n by t ∂
∂t

and L(A,λ)
n (x, y) by f (x, y; t) in equation (2.12), to construct

the following partial differential equation:(
x

∂2

∂x2
+

(
A +

(
1 − λx

y

)
I

)
∂

∂x
+

λt

y

)
f (x, y; t) = 0. (3.1)

Therefore, f (x, y; t) = L(A,λ)
n (x, y)tn is a solution of equation (3.1), since L(A,λ)

n (x, y)

is a solution of equation (2.12).
Next, using the recurrence relations (2.10) and (2.11), we determine the following linear

partial differential operators:

J 3 = t
∂

∂t
+

1

2
(A + I ),

J + = xyt
∂

∂x
+ yt2 ∂

∂t
+ (yA + (y − λx)I)t,

J− = x

yt

∂

∂x
− 1

y

∂

∂t
,

(3.2)

such that

J +
[
L(A,λ)

n (x, y)tn
] = (n + 1)L

(A,λ)
n+1 (x, y)tn+1,

J−[
L(A,λ)

n (x, y)tn
] = −(A + nI)L

(A,λ)
n−1 (x, y)tn−1, (3.3)

J 3
[
L(A,λ)

n (x, y)tn
] =

(
1

2
A +

(
n +

1

2

)
I

)
L(A,λ)

n (x, y)tn.

The operators J 3, J + and J− are linearly independent operators, defined onF , the complex
space of all functions analytic in some neighbourhood of (x0, y0, t0) ∈ C

3. We observe that the
operators J 3, J + and J− given in equation (3.2) satisfy the following commutation relations:

[J 3, J±] = ±J±, [J +, J−] = 2J 3. (3.4)

These commutation relations are identical with the commutation relations satisfied by
the basis elements [18; p 7(1.18)] of the special linear algebra sl(2), the Lie algebra of
the Lie group SL(2). Thus, we conclude that the J-operators J 3, J + and J− generate a
three-dimensional Lie algebra isomorphic to sl(2).

In terms of the J-operators, we introduce the Casimir operator [18; p 32]

C = J +J− + J 3J 3 − J 3

= x

(
x

∂2

∂x2
+

(
A +

(
1 − λx

y

)
I
) ∂

∂x
+

λt

y

∂

∂t

)
+

1

4
(A2 − I ). (3.5)

It is easy to verify that the J-operators commute with the Casimir operator C, that is

[C, J 3] = [C, J±] = 0. (3.6)

Expression (3.5) enables us to write equation (3.1) as

Cf (x, y; t) = 1
4 (A2 − I )f (x, y; t). (3.7)

7
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Now, we proceed to compute the multiplier representation [T (g)f ](x, y; t), g ∈ SL(2)

induced by the J-operators (3.2). First we compute the actions of exp(b′J +), exp(c′J −) and
exp(τ ′J 3) on f (x, y; t), where J +, J − and J 3 are the basis elements of the Lie algebra
sl(2).

Using [18; p 18 (theorem 1.10)] and equations (3.2), we find

[T (exp(b′J +))f ](x, y; t) = (1 − b′yt)−(A+I )

× exp

( −b′λxt

(1 − b′yt)

)
f

(
x

(1 − b′yt)
, y; t

(1 − b′yt)

)
, |b′yt | < 1,

[T (exp(c′J −))f ](x, y; t) = f

(
x(

1 − c′
yt

) , y; t

(
1 − c′

yt

))
,

∣∣∣∣ c′

yt

∣∣∣∣ < 1,

[T (exp(τ ′J 3))f ](x, y; t) = exp

(
1

2
(A + I )τ ′

)
f (x, y; teτ ′

), (3.8)

defined for |b′|, |c′| and |τ ′| sufficiently small, where b′, c′ and τ ′ are arbitrary constants and
f (x, y; t) is an arbitrary function.

For g ∈ SL(2) and d �= 0, it is a straightforward computation to show that

g = exp(b′J +) exp(c′J −) exp(τ ′J 3),

where b′ = − b
d

, c′ = −cd, exp
(

τ ′
2

) = 1
d

, 0 � Imτ ′ < 4π and ad − bc = 1.
Hence, the operator T (g) is given by

[T (g)f ](x, y; t)= (byt + d)−(A+I ) exp

(
bλxt

(byt + d)

)
f

(
xyt

(ayt + c)(byt + d)
, y; (ayt + c)

y(byt + d)

)
,

max

{ ∣∣∣∣byt

d

∣∣∣∣ ,
∣∣∣∣ c

ayt

∣∣∣∣
}

< 1; |arg(d)| < π. (3.9)

To accomplish our task of obtaining generating relations, we search for the matrix function
f (x, y; t) which satisfies equation (3.7). Consider the case when f (x, y; t) is a common
eigenfunction of C and J3, that is, let f (x, y; t) be a solution of simultaneous equations

Cf (x, y; t) = 1
4 (A2 − I )f (x, y; t),

J 3f (x, y; t) = (
1
2A +

(
ν + 1

2

)
I
)
f (x, y; t),

(3.10)

which may be rewritten as(
x

∂2

∂x2
+

(
A +

(
1 − λx

y

)
I

)
∂

∂x
+

λt

y

∂

∂t

)
f (x, y; t) = 0,(

t
∂

∂t
− ν

)
f (x, y; t) = 0.

(3.11)

Equations (3.11) yield

f (x, y; t) = L(A,λ)
ν (x, y)tν,

so that, we have

[T (g)f ](x, y; t) = (byt + d)−(A+(ν+1)I )

(
(ayt + c)

y

)ν

exp

(
bλxt

(byt + d)

)

×L(A,λ)
ν

(
xyt

(ayt + c)(byt + d)
, y

)
, (3.12)

satisfying the relation

C[T (g)f ](x, y; t) = 1
4 (A2 − I )[T (g)f ](x, y; t).

8
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If v is not an integer, then equation (3.12) has an expansion of the form

[T (g)f ](x, y; t) =
∞∑

n=−∞
Jn(g)L(A,λ)

n+ν (x, y)tν+n. (3.13)

Therefore, we prove the following result:

Theorem 3.1. The following generating equation holds:(
1 +

byt

d

)−(A+(ν+1)I ) (
1 +

c

ayt

)ν

exp

(
bλxt

(byt + d)

)
L(A,λ)

ν

(
xyt

(ayt + c)(byt + d)
, y

)

=
∞∑

n=−∞

�(1 + ν + n)

�(1 + ν)

(−byt

d

)n

L(A,λ)
n+ν (x, y){�(1 + n)}−1

× 2F1

[
−ν,A + (ν + n + 1)I ; n + 1; bc

ad

]
,∣∣∣∣byt

d

∣∣∣∣ < 1;
∣∣∣∣ c

ayt

∣∣∣∣ < 1; ad − bc = 1. (3.14)

Proof. Using equations (3.12) and (3.13), we obtain

(byt + d)−(A+(ν+1)I )

(
(ayt + c)

y

)ν

exp

(
bλxt

(byt + d)

)
L(A,λ)

ν

(
xyt

(ayt + c)(byt + d)
, y

)

=
∞∑

n=−∞
Jn(g)L(A,λ)

n+ν (x, y)tn. (3.15)

We determine Jn(g), by setting x = 0 in equation (3.15) to obtain

Jn(g) = (−1)n�(1 + ν + n)aνbnd−(A+(ν+n+1)I (�(1 + ν))−1(�(1 + n))−1

× 2F1

[
−ν,A + (ν + n + 1)I ; n + 1; bc

ad

]
. (3.16)

where 2F1 denotes the hypergeometric matrix function defined by equation (1.7).
Finally, substituting the expression for Jn(g) given by equation (3.16) into equation (3.15),

we obtain result (3.14). �

Remark 1. The following corollary is an immediate consequence of theorem 3.1, when ν is
a nonnegative integer, say ν = k.

Corollary 1. The following generating equation holds:(
1 +

byt

d

)−(A+(k+1)I ) (
1 +

c

ayt

)k

exp

(
bλxt

(byt + d)

)
L

(A,λ)
k

(
xyt

(ayt + c)(byt + d)
, y

)

=
∞∑

n=0

n!

k!

(
−byt

d

)n−k

L(A,λ)
n (x, y){�(n − k + 1)}−1

× 2F1

[
− k,A + (n + 1)I ; n − k + 1; bc

ad

]
,∣∣∣∣byt

d

∣∣∣∣ < 1;
∣∣∣∣ c

ayt

∣∣∣∣ < 1; ad − bc = 1; n = 0, 1, 2, . . . . (3.17)

9
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4. Representations of the Lie algebra G(0, 1) and modified Laguerre matrix polynomials

Consider the irreducible representation ↑ω,μ of the harmonic oscillator Lie algebra G(0, 1)

[18; p 85] where ω,μ ∈ C such that μ �= 0. The spectrum of this representation is the set
S = {−ω + n : n a nonnegative integer} and the representation space V has a basis (Wn)n∈S

such that

J 3Wn = nWn, EWn = μWn, J +Wn = μWn+1,

J−Wn = (n + ω)Wn−1, C0,1Wn = (J +J− − EJ 3)Wn = μωWn,
(4.1)

for all n ∈ S. The commutation relations satisfied by the operators J +, J−, J 3, E are

[J 3, J±] = ±J±, [J +, J−] = −E, [J±, E] = [J 3, E] = 0. (4.2)

In particular, we are looking for the functions Wn(x, y, t) = Zn(x, y)tn such that
equations (4.1) are satisfied for all n ∈ S. There are numerous possible solutions of
equations (4.2). We consider the linear differential operators J +, J−, J 3, E of the following
forms:

J + = −y2t
∂

∂x
+ λyt,

J− = x

λyt

∂

∂x
+

1

λy

∂

∂t
+

1

λyt
A,

J 3 = t
∂

∂t
,

E = 1.

(4.3)

The operators in equation (4.3) satisfy the commutation relations (4.2). In terms of the
functions Zn(x, y) and using operators (4.3), relations (4.1) reduce to

(i)

(
− y2 ∂

∂x
+ λy

)
Zn(x, y) = μZn+1(x, y),

(ii)

(
x

λy

∂

∂x
+

(A + nI)

λy

)
Zn(x, y) = (n + ω)Zn−1(x, y), (4.4)

(iii)

(
− xy

λ

∂2

∂x2
−

(
yA

λ
+

(
y

λ
(n + 1) − x

)
I

)
∂

∂x
+ A

)
Zn(x, y) = μωZn(x, y).

We can take ω = 0 and μ = 1, without any loss of generality. For this choice of ω and μ

and in view of equations (2.26) and (2.27), we observe that

Zn(x, y) = n!

(
x

y

)(−A−nI)

f (A,λ)
n (x, y),

satisfy equations (4.4).
Thus, we conclude that the matrix functions

Wn(x, y, t) = n!

(
x

y

)(−A−nI)

f (A,λ)
n (x, y)tn,

where n ∈ S, form a basis for a realization of the representation ↑0,1 of G(0, 1).
This representation of G(0, 1) can be extended to a local multiplier representation of the

corresponding Lie group G(0, 1). Using operators (4.3), the local multiplier representation

10
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T (g), g ∈ G(0, 1) defined on F , the space of all functions analytic in a neighbourhood of the
point (x0, y0, t0) = (1, 1, 1), takes the form

[T (exp τJ 3)W ](x, y, t) = W(x, y, teτ ),

[T (exp cJ −)W ](x, y, t) =
(

1 +
c

λyt

)A

W

(
x

(
1 +

c

λyt

)
, y, t

(
1 +

c

λyt

))
,

[T (exp bJ +)W ](x, y, t) = exp(λbyt)W

(
x

(
1 − by2t

x

)
, y, t

)
,

[T (exp aE)W ](x, y, t) = exp(a)W(x, y, t).

(4.5)

For g ∈ G(0, 1), we have

T (g) = T (exp bJ +)T (exp cJ −)T (exp τJ 3)T (exp aE)

and therefore we obtain

[T (g)W ](x, y, t) =
(

1 +
c

λyt

)A

exp(λbyt + a)

×W

(
x

(
1 − by2t

x

)(
1 +

c

λyt

)
, y, teτ

(
1 +

c

λyt

))
. (4.6)

The matrix elements of T (g) with respect to the analytic basis (Wn)n∈S are the functions
Akn(g) uniquely determined by ↑0,1 of G(0, 1) and are defined by

[T (g)Wn](x, y, t) =
∞∑

k=0

Akn(g)Wk(x, y, t), n = 0, 1, 2, . . . . (4.7)

Therefore, we prove the following result.

Theorem 4.1. The following generating equation holds:

n! exp(λbyt)

(
1 − by2t

x

)(−A−nI)

f (A,λ)
n

(
x

(
1 − by2t

x

)(
1 +

c

λyt

)
, y

)

=
∞∑

k=0

cn−kk!

(
x

y

)n−k

L
(n−k)
k (−bc)f

(A,λ)
k (x, y)tk−n,

∣∣∣∣by2t

x

∣∣∣∣ < 1;
∣∣∣∣ c

λyt

∣∣∣∣ < 1; n = 0, 1, 2, . . . . (4.8)

Proof. Using equations (4.6) and (4.7), we obtain

n!

(
x

y

)−n(
1 − by2t

x

)−A−nI

exp(λbyt + τn + a) f (A,λ)
n

(
x

(
1 − by2t

x

)(
1 +

c

λyt

)
, y

)
tn

=
∞∑

k=0

Akn(g)k!

(
x

y

)−k

f (A,λ)
n (x, y)tk,

∣∣∣∣by2t

x

∣∣∣∣ < 1;
∣∣∣∣ c

λyt

∣∣∣∣ < 1; n = 0, 1, 2, . . . (4.9)

and the matrix elements Akn(g) are given by [18; p 87(4.26)], (for ω = 0 and μ = 1),

Akn(g) = exp((a + nτ)cn−kL
(n−k)
k (−bc), k, n � 0. (4.10)

Substituting the value of Akn(g) given by equation (4.10) into equation (4.9) and
simplifying, we obtain result (4.8).

11
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Next, we consider the irreducible representation ↓ω,μ of the Lie algebra G(0, 1)

[18; p 89], where ω,μ ∈ C such that μ �= 0. The spectrum of this representation is the
set S = {−ω − 1 − n : n a nonnegative integer} and the representation space V has a basis
(Wn)n∈S such that

J 3Wn = nWn, EWn = −μWn, J +Wn = −(n + ω + 1)Wn+1,

J−Wn = μWn−1, C0,1Wn = (J +J− − EJ 3)Wn = −μωWn,
(4.11)

for all n ∈ S, the commutation relations satisfied by the operators J +, J−, J 3, E are same as
relations (4.2). In particular, we are looking for the functions Wn(x, y, t) = Zn(x, y)tn such
that relations (4.11) are satisfied for all n ∈ S.

Now we assume that the linear differential operators J +, J−, J 3, E take the following
forms:

J + = xyt
∂

∂x
− yt2 ∂

∂t
− (λxI + yA)t,

J− = − 1

λt

∂

∂x
,

J 3 = t
∂

∂t
,

E = 1.

(4.12)

The operators in equations (4.12) satisfy the commutation relations (4.2). In terms of the
functions Zn(x, y) and using operators (4.12), relations (4.11) reduce to

(i)

(
xy

∂

∂x
− (yA + (λx + ny)I)

)
Zn(x, y) = −(n + ω + 1)Zn+1(x, y),

(ii) −1

λ

∂

∂x
Zn(x, y) = μZn−1(x, y), (4.13)

(iii) −1

λ

(
xy

∂2

∂x2
− (yA + (λx − y(1 − n))I )

∂

∂x
+ λn

)
Zn(x, y) = −μωZn(x, y).

We can take ω = 0 and μ = −1, without any loss of generality. For this choice of
ω and μ, we observe that (i) and (ii) of equations (4.13) agree with the first two recurrence
relations of equation (2.26) and (iii) of equation (4.13) coincides with the matrix differential
equation (2.27) of 2VMLMaP f (A,λ)

n (x, y). In fact, for all n ∈ S the choice for Zn(x, y) =
f (A,λ)

n (x, y) satisfies equations (4.13).
Thus, we conclude that the functions

Wn(x, y, t) = f (A,λ)
n (x, y)tn, n ∈ S

form a basis for a realization of the representation ↓0,−1 of G(0, 1).
For the operators (4.12), the local multiplier representation T ′(g), g ∈ G(0, 1) defined on

F , the space of all functions analytic in a neighbourhood of the point (x0, y0, t0) = (1, 1, 1),
takes the form

[T ′(g)W ](x, y, t) = (1 + byt)−A exp(−λbxt + a)W

(
x(1 + byt)

(
1 − c

λxt

)
, y,

teτ

(1 + byt)

)
.

(4.14)

The matrix elements of T ′(g) with respect to the analytic basis (Wn)n∈S are the functions
Bkn(g) uniquely determined by ↓0,−1 of G(0, 1) and are defined by

12
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[T (g)Wn](x, y, t) =
∞∑

k=0

Bkn(g)Wk(x, y, t), n = 0, 1, 2, . . . . (4.15)

�

Therefore, we prove the following result.

Theorem 3. The following generating equation holds:

(1 + byt)(−A−nI) exp(−λbxt + (2n + 1)τ + bc) f (A,λ)
n

(
x(1 + byt)

(
1 − c

λxt

)
, y

)

=
∞∑

k=0

bn−kLn−k
k (bc) f

(A,λ)
k (x, y)tk−n,

|byt | < 1;
∣∣∣ c

λxt

∣∣∣ < 1; n = 0, 1, 2, . . . . (4.16)

Proof. Using equations (4.14) and (4.15), we obtain

(1 + byt)(−A−nI) exp(−λbxt + τn + a) f (A,λ)
n

(
x(1 + byt)

(
1 − c

λyt

)
, y

)
tn

=
∞∑

k=0

Bkn(g) f
(A,λ)
k (x, y)tk,

|byt | < 1;
∣∣∣ c

λxt

∣∣∣ < 1; n = 0, 1, 2, . . . . (4.17)

and the matrix elements Bkn(g) are given by [18; p 91(4.36)](for ω = 0 and μ = −1)

Bkn(g) = exp(−bc − (n + 1)τ + a)bn−kL
(n−k)
k (bc), k, n � 0. (4.18)

Substituting the value of Bkn(g) given by equation (4.18) into equation (4.17) and
simplifying, we obtain result (4.16). �

5. Special cases

First, we note the following special cases of the 2VLMaP L(A,λ)
n (x, y).

(1) For A = α ∈ C
1×1 and λ = I = 1, we have

L(α,1)
n (x, y) = L(α)

n (x, y), (5.1)

where L(α)
n (x, y) are the 2VALP defined by equations (1.11) and (1.12).

(2) For y = 1, we have

L(A,λ)
n (x, 1) = L(A,λ)

n (x), (5.2)

where L(A,λ)
n (x) are the LMaP defined by equations (1.4) and (1.6).

(3) For A = α ∈ C
1×1, λ = I = y = 1, we have

L(α,1)
n (x, 1) = L(α)

n (x). (5.3)

(4) For y = 0, we have

L(A,λ)
n (x, 0) = (−1)nλnxnI

n!
(5.4)

and for x = 0, we have

L(A,λ)
n (0, y) = (A + I )ny

n

n!
. (5.5)

13
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Also, we note the following special cases of the 2VMLMaP f (A,λ)
n (x, y):

(i) For A = β ∈ C
1×1 and λ = 1, we have

f (β,1)
n (x, y) = f β

n (x, y), (5.6)

where f
β
n (x, y) are the 2VMLP defined by equations (2.18) and (2.19).

(ii) For y = 1, we have

f (A,λ)
n (x, 1) = f (A,λ)

n (x), (5.7)

where f (A,λ)
n (x) denotes the modified Laguerre matrix polynomials (MLMaP) defined by

the generating function

(1 − t)−A exp(λxt) =
∞∑

n=0

f (A,λ)
n (x)tn, (5.8)

and specified by the series

f (A,λ)
n (x) =

n∑
k=0

(A)n−k(λx)k

k!(n − k)!
, n = 0, 1, 2, . . . . (5.9)

(iii) For A = β ∈ C
1×1 and y = λ = 1, we have

f (β,1)
n (x, 1) = f β

n (x), (5.10)

where f
β
n (x) denotes the modified Laguerre polynomials (MLP) [17; p 9].

(iv) For y = 0, we obtain

f (A,λ)
n (x, 0) = λnxnI

n!
(5.11)

and for x = 0, we obtain

f (A,λ)
n (0, y) = (A)ny

n

n!
. (5.12)

In view of the above-mentioned special cases we drive the generating relations involving
the polynomials related to 2VLMaP L(A,λ)

n (x, y) and 2VMLMaP f (A,λ)
n (x, y) by taking suitable

values to the parameters and variables in generating relations (3.14), (3.17) and (4.8).

(1) Taking A = α ∈ C
1×1 and λ = I = 1 in equations (3.14) and (3.17) and using

equation (5.1), we obtain(
1 +

byt

d

)−(α+ν+1) (
1 +

c

ayt

)ν

exp

(
bxt

(byt + d)

)
L(α)

ν

(
xyt

(ayt + c)(byt + d)
, y

)

=
∞∑

n=−∞

�(1 + ν + n)

�(1 + ν)

(−byt

d

)n

L(α)
n+ν(x, y){�(1 + n)}−1

× 2F1

[
− ν, α + ν + n + 1; n + 1; bc

ad

]
,∣∣∣∣byt

d

∣∣∣∣ < 1;
∣∣∣∣ c

ayt

∣∣∣∣ < 1; ad − bc = 1 (5.13)
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and(
1 +

byt

d

)−(α+k+1) (
1 +

c

ayt

)k

exp

(
bxt

(byt + d)

)
L

(α)
k

(
xyt

(ayt + c)(byt + d)
, y

)

=
∞∑

n=0

n!

k!

(−byt

d

)n−k

L(α)
n (x, y){�(n − k + 1)}−1

× 2F1

[
−k, α + n + 1; n − k + 1; bc

ad

]
,

∣∣∣∣byt

d

∣∣∣∣ < 1;
∣∣∣∣ c

ayt

∣∣∣∣ < 1; ad − bc = 1, (5.14)

(2) Taking y = 1 in equations (3.14) and (3.17) and using equation (5.2), we obtain(
1 +

bt

d

)−(A+(ν+1)I ) (
1 +

c

at

)ν

exp

(
bλxt

(bt + d)

)
L(A,λ)

ν

(
xt

(at + c)(bt + d)

)

=
∞∑

n=−∞

�(1 + ν + n)

�(1 + ν)

(−bt

d

)n

L(A,λ)
n+ν (x){�(1 + n)}−1

× 2F1

[
− ν,A + (ν + n + 1)I ; n + 1; bc

ad

]
,

∣∣∣∣bt

d

∣∣∣∣ < 1;
∣∣∣ c

at

∣∣∣ < 1; ad − bc = 1 (5.15)

and(
1 +

bt

d

)−(A+(k+1)I ) (
1 +

c

at

)k

exp

(
bλxt

(bt + d)

)
L

(A,λ)
k

(
xt

(at + c)(bt + d)

)

=
∞∑

n=0

n!

k!

(−bt

d

)n−k

L(A,λ)
n (x){�(n − k + 1)}−1

× 2F1

[
− k,A + (n + 1)I ; n − k + 1; bc

ad

]
,

∣∣∣∣bt

d

∣∣∣∣ < 1;
∣∣∣ c

at

∣∣∣ < 1; ad − bc = 1, (5.16)

respectively.
Also, taking A = α ∈ C

1×1 and y = λ = I = 1 in equations (3.14) and (3.17) and
using equation (5.3), we obtain [22; pp. 330–331 (29) and (32)].

(3) Taking a = d = t = 1, c = 0 and replacing b by −b in equation (3.14), we obtain

(1 − by)−(A+(ν+1)I ) exp

( −bλx

(1 − by)

)
L(A,λ)

ν

(
xy

(1 − by)
, y

)

=
∞∑

n=0

(1 + ν)n

n!
L(A,λ)

n+ν (x, y)(by)n, |by| < 1. (5.17)
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Further, taking A = α ∈ C
1×1 and λ = I = 1 in equation (5.17), we obtain

(1 − by)−(α+ν+1) exp

( −bx

(1 − by)

)
L(α)

ν

(
xy

(1 − by)
, y

)

=
∞∑

n=0

(1 + ν)n

n!
L(α)

n+ν(x, y)(by)n, |by| < 1, (5.18)

which for y = 1 reduces to the result [22; p 331(30)].
(4) Taking A = β ∈ C

1×1 and λ = I = 1 in equation (4.8) and using equation (5.6), we
obtain

n! exp(byt)

(
1 − by2t

x

)(−β−n)

f β
n

(
x

(
1 − by2t

x

)(
1 +

c

yt

)
, y

)
=

∞∑
k=0

cn−k

(
x

y

)n−k

× k!L(n−k)
k (−bc)f

β

k (x, y)tk−n,∣∣∣∣by2t

x

∣∣∣∣ < 1;
∣∣∣∣ c

yt

∣∣∣∣ < 1; n = 0, 1, 2, . . . . (5.19)

Further, replacing β by −p, t by −t in equation (5.19) and then using the relation

f β
n (x, y) = (−1)nL(−β−n)

n (x, y), (5.20)

we obtain

n! exp(−byt)

(
1 +

by2t

x

)p−n

L(p−n)
n

(
x

(
1 +

by2t

x

)(
1 − c

yt

)
, y

)

=
∞∑

k=0

cn−kk!

(
x

y

)n−k

L
(n−k)
k (−bc)L

(p−k)

k (x, y)tk−n,

∣∣∣∣by2t

x

∣∣∣∣ < 1;
∣∣∣∣ c

yt

∣∣∣∣ < 1, (5.21)

which for y = 1, reduces to the result [18; p 112(4.94)].
(5) Taking b = 0 in equation (4.8) and making use of the limit [18; p 88(4.29)], we obtain

f (A,λ)
n

(
x

(
1 +

c

λyt

)
, y

)
=

∞∑
k=0

1

(n − k)!

(
cx

yt

)n−k

f
(A,λ)
k (x, y),

∣∣∣∣ c

λyt

∣∣∣∣ < 1. (5.22)

Further, taking A = β ∈ C
1×1, λ = 1 and replacing t by x and k by n−k in equation

(5.22) and then using equation (5.6), we obtain

f β
n

(
x

(
1 +

c

xy

)
, y

)
=

∞∑
k=0

1

k!

(
c

y

)k

f
β

n−k(x, y),

∣∣∣∣ c

xy

∣∣∣∣ < 1, (5.23)

which for y = 1, reduces to the result [17; p 45(7)].
Again, replacing β by −p, c by −c in equation (5.23) and then using the relation (5.20)
we obtain

L(p−n)
n

(
x

(
1 − c

xy

)
, y

)
=

n∑
k=0

1

k!

(
c

y

)k

L
(p−n+k)

n−k (x, y),

∣∣∣∣ c

xy

∣∣∣∣ < 1, (5.24)

which on taking y = 1 and p − n = q reduces to the result [18; p 113].
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(6) Taking c = 0 in equation (4.8) and making use of the limit [18; p 88(4.29)], we obtain

exp(λbyt)

(
1 − by2t

x

)(−A−nI)

f (A,λ)
n

(
x

(
1 − by2t

x

)
, y

)

=
∞∑

k=0

(
k

n

)(
byt

x

)k−n

f
(A,λ)
k (x, y),

∣∣∣∣by2t

x

∣∣∣∣ < 1. (5.25)

Further, taking A = −p, λ = I = 1 and replacing t by x, b by −b and k by k+n and using
relation (5.20), we obtain

exp(−byt)(1 + by2)p−nL(p−n)
n (x(1 + by2), y)

=
∞∑

k=0

(
k + n

n

)
(by)kL

(p−k−n)

k+n (x, y), |by2| < 1, (5.26)

which on taking y = 1 and p − n = q reduces to the result [18; p 112].

For the same choices of parameters and variables we can obtain several other new results
corresponding to generating relation (4.16).

6. Concluding remarks

We have derived the generating relations involving 2VLMaP L(A,λ)
n (x, y) by constructing a

three-dimensional Lie algebra isomorphic to the special linear algebra sl(2), using Weisner’s
method [23]. We have also derived generating relations involving 2VMLMaP f (A,λ)

n (x, y) by
using the representations ↑ω,μ and ↓ω,μ of the Lie algebra G(0, 1), respectively.

In this section, we consider the 2VLMaP L(A,λ)
n (x, y) within the Lie algebra representation

formalism. We discuss the problem of framing these polynomials into the context of the
representation D(u,m0) [18; p 184] of the special linear algebra sl(2). We extend the
realization of the representation D(u,m0) of the Lie algebra sl(2) to a local multiplier
representation of the corresponding Lie group SL(2). For this purpose, we consider the
following convenient form of 2VLMaP L(A,λ)

n (x, y):

(1 − yt)−2(u+1)I exp

( −λxt

1 − yt

)
=

∞∑
n=0

L
((2u+1)I,λ)
n−u−1 (x, y)tn, (6.1)

where (n − u) is not an integer.
The irreducible representation D(u,m0) of sl(2) is defined for u,m0 ∈ C such that

0 � Re(m0) < 1 and u ± m0 are not integers. The spectrum of this representation is the set
S = {m0 + n : n an integer}. There is a basis {fm : m ∈ S} for the representation space V such
that

J 3fm = mfm, J +fm = (m − u)fm+1, J−fm = −(m + u)fm−1,
(6.2)

C1,0fm = (J +J− + J 3J 3 − J 3)fm = u(u + 1)fm,

for all m ∈ S. These operators satisfy the commutation relations (3.4).
In order to find a realization of this representation, we look for the functions

fm(x, y; t) = Zm(x, y)tm,

in F , the space of all functions analytic in a neighbourhood of the point (x0, y0, t0) = (1, 1, 0)

such that relations (6.2) are satisfied for all m ∈ S.
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We take the set of linear differential operators K3,K+,K− as follows:

K3 = t
∂

∂t
,

K+ = xyt
∂

∂x
+ yt2 ∂

∂t
+ (y(u + 1) − λx)t,

K− = x

yt

∂

∂x
− 1

y

∂

∂t
+

(u + 1)

yt
.

(6.3)

The operators in equation (6.3) satisfy the commutation relations (3.4). In terms of the
functions Zm(x, y) and using operators (6.3), relations (6.2) reduce to

(i)

(
xy

∂

∂x
+ (m + u + 1)y − λx

)
Zm(x, y) = (m − u)Zm+1(x, y),

(ii)

(
x

y

∂

∂x
− 1

y
(m − u − 1)

)
Zm(x, y) = −(m + u)Zm−1(x, y), (6.4)

(iii)

(
x

∂2

∂x2
+

(
2(u + 1) − λx

y

)
∂

∂x
+

λ

y
(m − u − 1)

)
Zm(x, y) = 0.

Without any loss of generality, we can choose m,u ∈ C such that (m − u) is not an
integer. For this choice of m,u and for all m ∈ S the functions

Zm(x, y) = L
((2u+1)I,λ)
m−u−1 (x, y)

satisfy relations (6.4).
Thus we conclude that, the functions

fm(x, y, t) = L
((2u+1)I,λ)
m−u−1 (x, y)tm,

m ∈ S form a basis for a realization of the representation D(u,m0) of sl(2). In the usual
manner this realization can be extended to a local multiplier representation T of SL(2) on the
space F . Using operators (6.3), the local multiplier representation takes the form

[T (exp τ ′J 3)f ](x, y, t) = f (x, y, teτ ′
),

[T (exp c′J −)f ](x, y, t) =
(

1 − c′

yt

)u+1

f

(
x(

1 − c′
yt

) , y, t

(
1 − c′

yt

))
,

∣∣∣∣ c′

yt

∣∣∣∣ < 1,

[T (exp b′J +)f ](x, y, t) = (1 − b′yt)−u−1

× exp

( −b′λxt

(1 − b′yt)

)
f

(
x

(1 − b′yt)
, y,

t

(1 − b′yt)

)
, |b′yt | < 1, (6.5)

valid for all f ∈ F , (x, y, t) in the domain of F and for |b′|, |c′| and |τ ′| sufficiently small.
Therefore, the operator T (g) is given by

[T (g)f ](x, y, t) = [T (exp b′J +)T (exp c′J −)T (exp τ ′J 3)f ](x, y, t)

= (1 − b′yt)−u−1 exp

( −b′λxt

(1 − b′yt)

)(
yt

(yt − c′ + b′c′yt)

)u+1

× f

(
xyt

(1 − b′yt)(yt − c′ + b′c′yt)
, y,

(yt − c′ + b′c′yt)eτ ′

y(1 − b′yt)

)
, (6.6)
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which after setting b′ = − b
d

, c′ = −cd, exp
(

τ ′
2

) = d−1 and using the fact that ad − bc = 1
gives us

[T (g)f ](x, y, t) = (byt + d)−u−1

(
a +

c

yt

)−u−1

exp

(
bλxt

(byt + d)

)

× f

(
xyt

(ayt + c)(byt + d)
, y,

(ayt + c)

y(byt + d)

)
,

∣∣∣∣ c

ayt

∣∣∣∣ < 1;
∣∣∣∣byt

d

∣∣∣∣ < 1; ad − bc = 1, (6.7)

for f ∈ F and g in a small enough neighbourhood of e so that the above expression is
uniquely defined. The matrix elements of T (g) with respect to the analytic basis (fm)m∈S are
the functions Alk(g) uniquely determined by D(u,m0) of sl(2) and are defined by

[T (g)fm0+k](x, y, t) =
∞∑

l=−∞
Alk(g)fm0+l (x, y, t), k = 0,±1,±2, . . . . (6.8)

Now, using equations (6.7) and (6.8), we obtain

(1 + bc)−u−1−m0−k

(
1 +

byt

d

)−u−1−m0−k(
1 +

c

ayt

)−u−1+m0+k

a2(m0+k)tm0+k exp

(
bλxt

(byt + d)

)

×L
((2u+1)I,λ)
m0+k−u−1

(
x(

1 + c
ayt

)
(1 + bc)

(
1 + byt

d

) , y

)

=
∞∑

l=−∞
Alk(g)L

((2u+1)I,λ)
m0+l−u−1 (x, y)tm0+l ,

which further simplifies to

(1 + bc)−ν−μ−1

(
1 +

byt

d

)−ν−μ−1(
1 +

c

ayt

)ν

exp

(
bλxt

(byt + d)

)
a2ν+μ+1

×L(μI,λ)
ν

(
x(

1 + c
ayt

)
(1 + bc)

(
1 + byt

d

) , y

)
=

∞∑
l=−∞

Alk(g)L
(μI,λ)

ν−l (x, y)t−l ,

|bc| < 1;
∣∣∣ c
a

∣∣∣ < |yt | <

∣∣∣∣db
∣∣∣∣ ; −π < arg(a), arg(d) < π; ad − bc = 1.

(6.9)

An explicit expression for the matrix elements Alk(g) is

Alk(g) = (1 + bc)−ν−1a2ν+μ+1−lcl�(μ + ν + 1)

�(l + 1)�(μ + ν − l + 1)
2F1

[
− μ − ν + l, ν + 1; l + 1; bc

ad

]
, (6.10)

where 2F1 is the hypergeometric function [1]. Substituting the value of Alk(g) given by
equation (6.10) into equation (6.9) and simplifying we obtain the following generating
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equation:

(1 + bc)−μ

(
1 +

byt

d

)−ν−μ−1(
1 +

c

ayt

)ν

exp

(
bλxt

(byt + d)

)

×L(μI,λ)
ν

(
x(

1 + c
ayt

)
(1 + bc)

(
1 + byt

d

) , y

)
=

∞∑
l=−∞

(
c
at

)l
�(μ + ν + 1)

�(μ + ν − l + 1)�(l + 1)

× 2F1

[
− μ − ν + l, ν + 1; l + 1; bc

ad

]
L

(μI,λ)

ν−l (x, y),

|bc| < 1;
∣∣∣∣ c

ay

∣∣∣∣ < t <

∣∣∣∣ d

by

∣∣∣∣ ; d = 1 + bc

a
, (6.11)

where μ, ν ∈ C such that ν and μ + ν are not integers.
In equation (6.11), when l + 1 � 0, the hypergeometric function 2F1 is defined by

lim
c→−n

2F1[a, b; c; t]

�(c)
= a(a + 1) . . . (a + n)b(b + 1) . . . (b + n)tn+1

(n + 1)!
× 2F1[a + n + 1, b + n + 1; n + 2; t], n = 0, 1, 2, . . . . (6.12)

In general, the right-hand side of relation (6.11) converges whenever the left-hand side
does.

In generating relation (6.11) taking λ = I = 1, we obtain the scalar result [16; p 64(15)]
which for y = 1 reduces to the result [18; p 187(5.94)].
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